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INTRODUCTION

In a previous paper [2] we studied the (decomposable)
Kronecker product A ® B of finite rank linear transforma-
tions A and B on complex Hilbert space, and the relation
to (decomposable) dyadic products (U][V) , where U and V
are also finite rank linear transformations. (Definitions
of these products are in the following section.) 1In partic-

ular, we characterized those linearly independent families

fugd » {v4} with the property that
N t
i=1
denotes the trans-

for given transformations A and B . (Bt

pose of B .) In this paper, we extend the analysis of (1.1)

by characterizing the generating sums

N

RACAIARS (1.2a)

> (U, ® V=S (1.2b)
® = .

e D Sl

where 5 and § are general linear transformations and not
just decomposable Kronecker of dyad products. Thus, this
paper improves upon [2] in the three respects:
{(a) The sums (1.2a) and (1.2b) are more general.
Moreover, they will be characterized without

assuming linear independence of the families
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oy} » v} . (h. 3.2.)
(b) The relations among the transformations R ,
S, {Ui] . {Vi] will be natural in the
sense that they do not depend on particular
matrix representations of the functions in
question. This matrix dependence was used
in [2] in the analysis of (1.1).
(c) We show a duality between the operations
"]1{" and "®" , so that characterizing
(1.2a) is equivalent to characterizing
(1.2b). (Th. 4.2, 4.3.)
We briefly mention one motivation for studying equations
of the form (1.1). If A = (aij) and B = (bjk) are each
2 x 2 scalar-entried matrices, then the classical definition

of matrix multiplication says that the four entries
2
4k = 231(aij ' bjk) @ A R®mL ; &, (1.3)

of the matrix product AB generally require eight scalar
multiplications, viz., the eight products (aij . bjk) o O

j s, k=1, 2 . In the landmark paper of Strassen [5], he
shows that there are seven scalar products, (a11 + 322) B

(bll + b12) i (all * a12) . (b22) , etc., whose sums and
differences suffice to produce the four scalars cg4 of (1.3).
Now in [3] it is shown that if A and B are consistent
rectangular matrices (i.e., AB 1is defined), and if I is

an identity matrix, then the scalars Cik of AB each iden-
tify with a certain Kronecker product E; ® I, while the
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generating scalar products (such as (311 + 322) . (b11 + b12) v
(all + a12) . (b22) ,...) each identify with a unique dyadic
product (U][V) . To minimize the number of scalar products
which produce all entries of matrix AB 1is equavlent, there-
fore, to minimizing the number of dyadic products (Ui][vi)
whose sums and differences produce all the Kronecker products

Ejp ® I = ! (Ui][vi) . From (1.2a) and (1.2b) we derive

some interesting special cases.

. ———




PRELIMINARY RESULTS AND DEFINITIONS

Families {ui} & [vi] , i=1, 2 ,..., N in Hilbert

space are biorthonormal if (ui,vj) = 61j , the Kronecker

delta. ¢£(H,K) denotes all bounded linear transformations
sending Hilbert space ¥ to Hilbert space X ; among these
éretherankoneéz_a_c!_s_ (x xy) for x e K, y e H , where
for all z ¢ ¥, (x x y):z » (z,y)x . The adjoint of
A e £(H,K) is A* (which belongs to £(K,H)) and is defined
by (Ay,x) = (y,A*x) for all x ¢e K, y e H . From this
we see that for (x x y) ¢ £(H,K) , A ¢ £(K,H') and
B e £(H',H) , we have
A(x x y) = (Ax x y) ,
and (2.1)
(x x y)B = (x x B*y) .
The space £(H,K) accepts an inner product [°,°] defined
by [A,B] = t:t(B*A) , the trace of B*A in g£(H,H) , where

A,Be¢ £(H,K) . The dyad of transformations A ¢ S(Hi,ﬂz)
and B¢ & (KI’KZ) is denoted by (A][B) , where
(A][B):C » [C,B]A (2.2)
for all C ¢ z(Kl,Kz) . cf. [4, Ch. 5, §5].
For Hilbert space H , H denotes the Hilbert space of

linear functionals on H , where for x ¢ H, X ¢ H 1is given
by
X:y + (y,x) (2.3)
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for all y e ¥ . The transpose At of A e £(H,K) 1is that
transformation sending K to H defined by At(§)(x) = y(Ax)
for all x e H, ¥y e¢ R. As a special case the transpose of
adyad is (x x y)t = (¥ x X) while its adjoint is (x x y)*
= (yxx). If Ac¢ £(Hy,H)) , B¢ £(K;,K,) , then the
Kronecker product A ® Bt of transformations A and Bt is

given by
A ® B:Cc + ACB (2.4)
for all C e £(K),H;) . cf. [4, p. 211].

For any transformation A , the symbols rgA and n(A)
denote the range of A and the nullspace of A , respectively,
while yf_ denotes the orthogonal complement of subsapce M .
If McH , then

A ¢ £(M,rgA) c £(H,H’) (2.5)
will mean A:M + rgA cH’, McH , and
A:M* » 0, (i.e., M 1is orthogonal to n(A)) .

An important relationship between the dyad and Kronecker prod-
ucts is given by

xxY)Iuxv)=(xxu)e (FxV) (2.6)
for all x, y, u, v in (possibly different) Hilbert
spaces, cf. [1, p. 131]. Finally, for vectors {Xizi =1,
2 54005 N} the symbol sp(Xy:i=1 , 2 ,..., N) or sp(xi)
will denote their linear span.




THE MAIN RESULT

We now characterize the terms (Ui][Vi) of sum (1.2a)
given transformation R . The following terminology will be

convenient

Definition 3.1. For the families of linear transformations

[Uil [~ £(H1,H2) " {Vi} - £(K1,K2) s we define their respective
ranks r,» I, by

—~—— o~

dimension (sp(Ui)) 5
(3.1)
= dimension (sp(Vi)) .

For any linearly independent family {Ui] » then biorthonormal

complement to {Ui} is that unique linearly independent sub-
set {ﬁi} of sp(U;) such that
[ﬁi,Uj] = sij s the Kronecker delta. (3.2)
Remark. Biorthonormality is a natural generalization of
orthonormality. Indeed, if {Ui} is not only linearly inde-
pendent, but orthonormal as well, then we would have U; = Uy
for each 1 . Also suggestive of orthonormality is that any
element 2Z ¢ ap(Ui) = sp(ﬁi) has representation
z = z:,[z,ﬁi]u1 - 213[2’"1]61 (3.3)

which follows from (3.2).

Theorem 3.2. (1) Given any linear transformation

E’x(xloxz) - £(H1,H2)

R
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(2) Given integer k > 0 , and any
(ru+k)-e1ement set of transformations

{Ui} » such that rgR c sp(Ui) c £(H1,H2) "
where (by reordering if necessary) the
first T, elements form a basis for
sp(Ui) . Accordingly, if k >0 we are
given unique scalars {ai(j)] , defined

by

U, = SeWPuy, , 3=, +1,

I =1
ru+2 By ru+k .
(3) Given arbitrary linear transformations

(for k >0) ,
V V LR V €£(K ) .
ru+1 o ru+2 s y ru+k 1’K2

We conclude that
N
1§1(U1][(V1) =3 Ner 4k (3.4)

if, and only if, each vy = £(K1,K2) TREL B NS S X o
is given by

* 0 > =
Vi-l_{_(Ui)- z aq V.1 il , 2 seees T, (3.5)
j-ru+1
where .N = r, + k , and the scalars {ai(j)] are defined in
Hypothesis (2). If k =0 , then vy = I}_*(fli)

Proof (3.4)=(3.5). We apply both sides of (3.4) to ar-

bitrary 2Z ¢ z(l(l,l(z) to obtain

N
121[z,v1101 = R(Z) ¢ rgR . (3.6)
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That is, R(Z) ¢ sp(U;) , so that from (3.3), we may write
r
R(Z) = 1§1[5(Z)’61]U1
r, L5 3.7)
= 1‘31[2’5 (U;) 1y

We reformulate (3.6) as follows, where N = A k :

WR—— asmv——

For all Z ¢ £(Ky,K,)

2 (2,9, % (2,v;]
z,v,lu, + z,V.1U, = R(Z
e e R()
Tu N . -
e izt + T 2899 dmu, =0,
Pl j==ru+1cLi 3 AE T,

This last equation is obtained by substitution of equations
for the Uj's (Hypothesis (2)) and (3.7) This implies that

q i R .
R - B , Lel, 2,1,
; h g 5
» E which establishes that (3.4)=(3.5).

(3.5)=(3.4): Substitute (3.5) into (3.4) and the proof is

by verification. This ends the theorem.no

Remark. We note that our Hypotheses (2) wherein we as-
sume sp(Ui) > rgR , is also a necessary condition if (3.4)
is to obtain. This is immediate from (3.6). Finally, we
observe that Theorem 3.2 is the generalization of [2, Th. 3.1]
which replaces R with A ® B® and requires linear inde-
pendence of the families {Ui] $ [Vi} .

R




A DUALITY THEOREM

Having completely characterized compenent terms (Ui][Vi)

for sums (3.4), we raise the question whether a characterization

is possible with terms of the form U; @ vy , i.e., if v g
replaces "][" . With minor modification, (3.4) is equivalent

to such a sum. In developing this idea, we come to

Definition 4.1. Given U ¢ £(H1,H2) _— £(K1,K2) .

Then the linear transformation ¢ 1is defined by
¢ (UI[V) =U®7V (4.1)
(linear extension defines ¢ on sp((UI[V)) .

We present the theorem which says that in (4.1), oper-

ations "][" and "®" may be interchanged.

Theorem 4.2. The equation
¢ (UI[V) =U® 7V (4.1)
is valid for all U ¢ £(H1,H2) sy Ve S(Kl,Kz) if, and only
if,

¢ (PeQ) = (PI[Q) (4.2)
for all P e £(K,,H,) , Q¢ £(R;,H;) .

Proof. Without loss of generality (due to linear exten-
sion), we may suppose U, V, P and Q are all rank one

transformations. Now set
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w 10 =

U= (u2 X ul) u; € Hl » Uy € “2
V= (v2 X vl) vy € K1 » Vo € K2
P = (u2 - vz)
Q= (Gl X Vl)
Then
p(UI[V) =U SV

3 (uy x uDIl Wy x vy)) = (uy x up) ® (75 x ¥p)
(u; x v)1[(u; x v{) £rom (2.6)

t

¢ ((uy x v2)-®'(ﬁl X Vl))
= ¢(P ® Q) = (P]1[Q) .

Since the above equations hold for rank one transformations,

f

linear extension guarantees validity for arbitrary finite

rank transformations, and the theorem is proved.Oo

An immediate application of this result is a dual formu-

lation of Theorem 3.2, which we state without proof.

Theorem 4.3 (dual to Th. 3.2). Given Hypotheses (1), (2)

and (3) of Theorem 3.2 then
%( 1[(vy) =R
U =

if, and only if,

Zu eV =9 (®
where ¢(X][Y) = X®Y , '
if, and only if,

* * B
Vi =R (U) - T “1(3)"3 SRR o,

Remark. One difficulty with Theorem 4.3 is that although

we may know a good deal about R , we may not be able to under-

stand the precise form of ¢(R) . In the next section, we
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present applications and special cases where this difficulty

} does not arise.




SOME APPLICATIONS AND SPECIAL CASES

The case [Ui} is linearly independent.

Theorem 5.1. If R is a linear transformation of fi-

nite rank M , and if {Ul,Uz,...,U"} is a basis “or «rgR ,
then there is one and only one basis (VI,Vz,...,V“] of rgl*

such that
M
T (U l(vy) =R . (5.1)
i=1
In fact,
v, =R'@) L1=1, 2,..,M. (5.2)

Proof. This is just Theorem 3.2 when k = 0 .

Now Theorem 5.1 gives us, as a special case, Theorem 3.4
of [2], which we state, along with a dual form which is a

consequence of Theorem 4.2.

Theorem 5.2 (plus dual to [2, Th. 3.4]). Let A and B
be linear transformations of ranks r and s , respectively.

Let {Ul,Uz,...,Urs] be a basis for S(rgB*,rgA) . Then

there is one and only one basis {vl,vz,...,vrs} for S(rgB,rgA*)'

such that

rs t
i}.'_.‘,l(uil[ (V) =A® B, (5.3)

which obtains if, and only if,
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rs *
z Uy svi = (A][B) . (5.4)
i=1
Moreover,
" &
V; = A UiB SN ¥ SO GPEEINTIRE (5.5)

Proof. Display (5.3) follows from (5.1) with A @ B*
replacing R , while (5.4) follows from (5.3) by using the
the duality Theorem 4.2. The exact form (5.5) for the Vi's
follows from (5.2). (We note, an explicit description for
the Vi's is missing from [2, Th. 3.4].) We observe that

for the special case R =A® Bt , we have rgR = S(rgB*,rgA) .

and rggf = £(rgB,rgAf) (cf. (2.5)) so that the hypotheses
of Theorem 5.2 are consistent with those of Theorem 5.1; and

the proof is done.o

The case R =0 .
We raise the question: When do dyads or (with help of
Th. 4.2) Kronecker products sum to zero? We remark that an
answer to this question is an answer to the question: When
do dyads (resp. Kronecker products) sum to another dyad (resp.

Kronecker product)? This is clear since
N N-1
1§1(01] [vi) =0= 121(1]1][("1) a5 '(UN] [VN) .

For the statement of the next theorem, we will not need the

fact that the compenent vectors Uy , vV, are linear trans-
formations. Accordingly, they will be presented only as el-
ements in Hilbert space. The proof of the following theorem

is direct, given Theorem 3.2.

Theorem 5.3. Given linearly independent {UI,UZ,...,UN}
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in Hilbert space H , and k vectors
Uppe = Doy Ty, ¢ speuy:t = 1,2,...,1)

é t- 1 ] 2 B ] k L4

Then for any k-element set of vectors

Verl 2 Veg 2eces Ve e B,
there is one and only one r-element set of vectors

VI 9 Vz 9ccey Vr C H (5'6)
such that

rgk( JI{vy) =0 (5.7)
U, l[vy) =0, :
Ay

which holds true if, and only if,

r+k
1)31 UV, =0. (5.8)
Moreover, the Vy of (5.6), (5.7) and (5.8) are given by
T ST e O (5.9)
i jur i : . st

The case R = I , the identity.

N
It is known, of course, that if ;Dl(Ui][Vi) = Iy , the

identity in N-dimensional space, then it suffices that
Uy =V, and [Ui} is an orthonormal basis. Slightly more
general is the condition that [Uil and {V;} be complemen-

tary biorthormal sets (cf. (3.3)). But Theorem 3.2 subsumes

both these cases and presents the general situation as follows:

Theorem 5.4 (decompositions of the identity). Given any

spanning set Up s Uy seees Uy for Hilbert space H , 1i.e.,
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sp(Ui) = H , where dimension H = r s N . Suppose the first
r vectors U1 s Uy 5een, Ur for a basis for H . Then for
n - r arbitrary vectors
vr+1 ’ Vﬁz 9oy VN e H ’
there is a unique r-element set of vectors
Vl ’ V2 gccey Vr e H (5.10)
such that

N
igl(uillvi) = 1_, the identity on H .
Moreover, the vectors of (5.10) are given by

% = (1)

i-Ui-jE_'_lai Vj ’ 1-1 ’ 2 goeey 1’.', (5.11)
=r

where the scalars ai(j) are defined by

r
Uj"izlai(j)Ui, j-r+1, r+2 ,o-.,No

Remark. The context of Theorem 5.4 does not lend itself
to an interesting dual statement via Theorem 4.2, unless we
are interested in when the sum of Kronecker products U; @ \A
produces the particular rank one operator ¢(Ir):z - zIr ’

for all complex =z .

oy ‘ wg*w‘;m —~ S ————
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